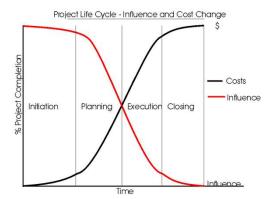
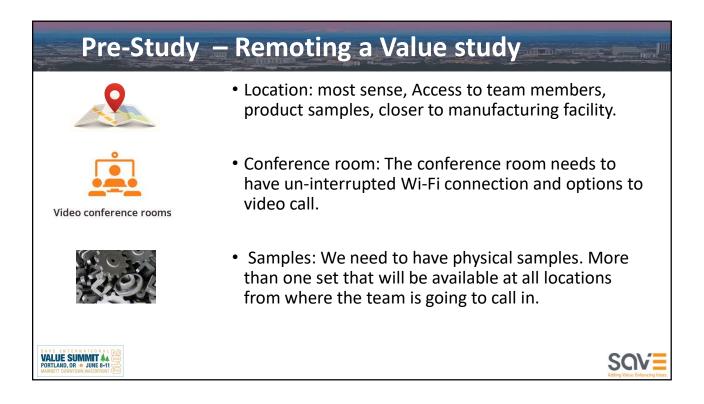


Generac Power Systems Introduction **GENERAC** · Founded 1959 in Genesee, Wisconsin · A leading designer and manufacturer of a wide range of GENERAC INDUSTRIAL power generation equipment & other engine powered products GENERAC MOBILE Market leader in home standby generator GENERAC About 3600 employees spread out in US, Mexico, Italy, GENERAC of Pika neurio UK, China and Brazil. **selmec**. MOTORTECH VALUE SUMMIT APPORTLAND, OR # JUNE 8-1 SOV

Introduction


- Global companies with global products and unique challenges
- Engineering teams, sales, marketing located across the globe
- Planning and bringing them together for a Value study has got lot harder
- Always exploring for tools to support collaboration
- Explores tools that support conducting a remote value study

Value Engineering


- Manufacturing Industry has accepted Value Methodology as part of engineering new products with the right costs.
- With short product launches, no time for value study
- Cost to influence graph helps convincing the need for more VE then VA.

Pre-Study - Remoting a Value study

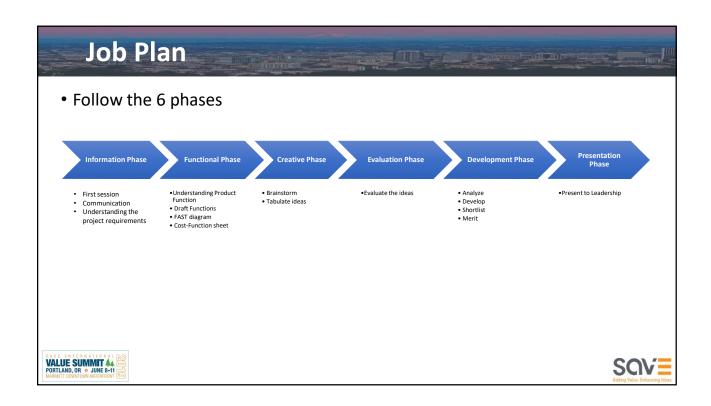
 Videos: Planning and shooting videos of manufacturing assembly sequence. Folks who cannot make the plant tour can understand the assembly sequence as part of Information session.

 Value specialist: Plan for having local trained AVS physically present at every location that is calling in. This helps in minimizing the communication challenges.

Pre-Study – Remoting a Value study

 Additional Time: Plan for extra time for completing Function analysis to make everyone heard and capturing the inputs.

- Shared Project folders: All the information is available online at a shared location, so the teams can access and review them independently.
- Tech Support: Please make sure the IT tech support team will be available to support on the days of study.


Pre-Study – Remoting a Value study

 Team: The most important factor to bring success to your study. Knowledgeable, multi disciplinary, focused

- Team to follow online meeting etiquette.
- Plan extra time to introduce everyone on the call.
- Confirm availability of information (slides, components, drawings etc.) for everyone dialed in.
- Establish boundaries on how to handle questions and need to raise the hand etc.

Job Plan

Information Phase:

- Walk thru the information slides.
- Have team members present their area of representation.
- Play video's of manufacturing or assembly line for folks who cannot visit the plant.
- Plan to answer all questions before proceeding to next phase.

Function Analysis:

- Extract a detailed Costed multilevel BOM. This helps us understand the cost distribution btw various assemblies and sub-assemblies.
- Create functions of each multilevel assembly. This helps us establish the relationship of functions performed by that sub assembly and the cost taken to achieve it.
- Classify the functions as Basic, Secondary & tertiary etc.

Job Plan

• Listing Functions by sub assembly (Verb-Noun)

No.	Part/ Process #	Cost	Function (Verb-Noun)							
			Orient filter							
1	Filter Bracket	\$2.23	Holds assembly							
170		No.	mount filer							
			secure bracket							
			Contains fluid							
			holds pressure							
2			secures centertube							
	Top Shell	\$2.70	Seals element							
		42.70	seas nousing							
			Actuates snap							
			Retains snap							
			connects outlet							
3			Contains fluid							
	Bottom Shell		holds pressure							
			secures centertube							
			Seals element							
			seals housing							
			Contain snap							
			connects Inlet							
			filters fluid							
			seals housing							
4	inner element	\$0.75	prevent bypass							
		1777	Direct flow							
			seals mediapack							
5 Ori	Oring	\$0.15	Ressist pressure							
	J9	\$0.13	ocas nousing							
	Seas nous	Supports Media								
5 (Center tube	\$0.75	Directs flow							
	Conter tube	\$0.75	prevene bypuss							
			provides alignment							

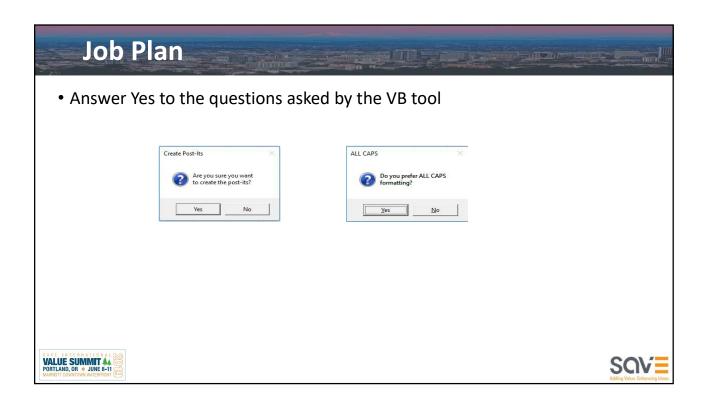
VALUE SUMMIT 44
PORTLAND, OR * JUNE 8-11

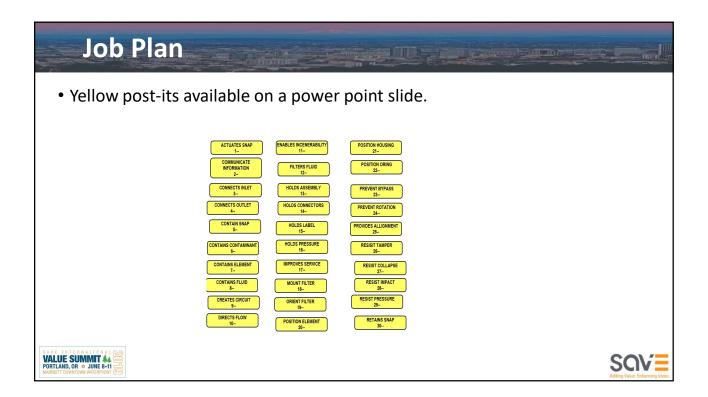
- Copy the functions needed to the VB tool
- The VB tool will help create yellow Posit-its

Α	В	E	F	G							
Number	Function List	Create PowerPoint Post-Its									
1	Actuates snap										
2	communicate information										
3	connects Inlet										
4	connects outlet										
5	Contain snap										
6	contains contaminant										
7	Contains element										
8	Contains fluid										
9	Creates circuit										
10	Directs flow										
11	Enables incenerability										
12	Filters fluid										
13	Holds assembly										
14	Holds connectors										
15	Holds label										
16	holds pressure										
17	Improves Service										
18	mount filter										

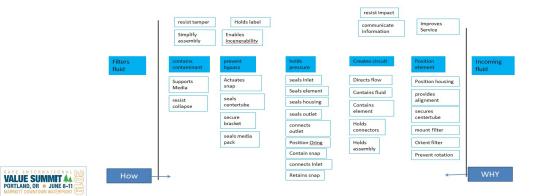
Job Plan

Tool for FAST


 The tool has detailed VB code written to support translation of these functions into post-it in PowerPoint


```
sub Charafferits!

smiplin offT a Powerpoint. Presentation, offlide he FowerPoint. Blide
Dim Shapes he Long
```

Building the Fast

- Using the Template available in the power point start constructing the FAST diagram.
- A designated driver shares the screen and moves the posit to form the detailed Fast.

Cost Function Worksheet

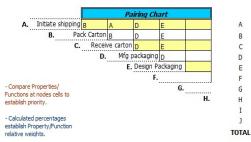
• Use the functions from the FAST diagram to complete your Cost Function worksheet.

	Description Filter Bracket	Cost 2.23	% Alloted		Functions																				
No.				cont conta	mina		vent lass		lds sure	Crei		Posi	ition nent	Res		Impr	oves		te	sim		Ena incen		res	sist nper
1				\$0.00	0%	\$0.00	0%	\$0.00	0%	\$0.00	0%	\$1.12	50%	\$0.56	25%	\$0.56	25%	\$0.00	0%	\$0.00	0%	\$0.00	0%	\$0.00	09
2	Top Shell	2.70	100%	\$0.14	5%	\$0.14	5%	\$1.08	40%	\$0.27	10%	\$0.27	10%	\$0.14	5%	\$0.27	10%	\$0.03	1%	\$0.14	5%	\$0.11	496	\$0.14	59
3	Bottom Shell	1.83	100%	\$0.09	5%	\$0.09	5%	\$0.73	40%	\$0.18	10%	\$0.00	0%	\$0.09	5%	\$0.18	10%	\$0.02	1%	\$0.18	10%	\$0.07	4%	\$0.18	10
4	inner element	0.75	100%	\$0.31	41%	\$0.31	41%	\$0.04	5%	\$0.02	3%	\$0.04	5%	\$0.00	0%	\$0.00	0%	\$0.00	0%	\$0.00	0%	\$0.04	5%	\$0.00	09
5	Oring	0.15	100%	\$0.00	0%	\$0.00	0%	\$0.12	80%	\$0.00	0%	\$0.00	0%	\$0.00	0%	\$0.00	0%	\$0.00	0%	\$0.03	18%	\$0.00	2%	\$0.00	0
6	Centertube	0.75	100%	\$0.00	0%	\$0.23	30%	\$0.38	50%	\$0.05	7%	\$0.05	6%	\$0.00	0%	\$0.00	0%	\$0.00	0%	\$0.04	5%	\$0.02	2%	\$0.00	0
	Total Cost			\$0.53 6% 6		\$0.76		\$2.34		\$0.53		\$1.47		\$0.78		\$1.01		\$0.05		\$0.38		\$0.24		\$0.32	
	Function % of Total					91	9%		28%	6	%	17%		9%		12%		1%		5	%	3	%	4	%
	Ranking					4		1		6		2		4		3		11		8		10		9	

VALUE SUMMIT AA
PORTLAND, OR * JUNE 8-11

Paired Comparison

• Pair the functions from the critical path on FAST diagram to calculate the importance.


20%

0%

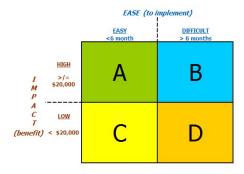
40%

30%

100%

Job Plan

Creative Phase:


- Share the output of the Function analysis
- Complete a structured brainstorming
- Follow the tools and guidelines for conducting a successful ideation

Evaluation Phase:

 Use the simple 4 blocker to rank the ideas based on estimated savings and time needed

VALUE SUMMIT 44
PORTLAND, OR * JUNE 8-11

Job Plan

Development & Management Phase:

- Identify the top A projects and develop the idea with all details required for a decision
- The top ideas are presented to Extended team and Management

Conclusion

- Follow the three step process
- Accommodate people from other locations
- Enables more participation during function analysis
- Remoting FAST to reality
- Schedule more time for function analysis

Questions

https://www.youtube.com/watch?v=kNz82r5nyUw

